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SUMMARY

In a previous paper a general procedure for deriving stabilized ®nite element schemes for advective type
problems based on invoking higher order balance laws over ®nite size domains was presented. This provides an
expression for the element stabilization parameter in terms of the solution residual and its ®rst derivatives in a
kind of iterative or adaptative manner. Details of the application of this procedure to 1D and 2D advective±
diffusive problems are given. Some examples of applications showing the potential of the new approach are
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1. INTRODUCTION

It is well known that the Galerkin ®nite element solution of the standard advective±diffusive transport

equation becomes unstable for moderate and high values of the advection terms. Traditional ways to

eliminate the resulting spurious oscillations are based on the direct addition of some balancing

diffusion to the original problem.1±5 More rigorous techniques based on Petrov±Galerkin weighting

(such as the SUPG and the GLS methods,6,13 Taylor±Galerkin14 and characteristic approxima-

tions15,16 have been proposed to derive stabilized ®nite element equations for advective±diffusive

problems. A comparison of these methods can be found in Reference 17. All these introduce (at least)

one parameter (usually known as the stabilization parameter, characteristic length, intrinsic time, etc.)

whose value controls the stability of the numerical solution.

The precise computation of the hereinafter called stabilization parameter can only be attempted for

very simple one-dimensional (1D) problems such as the sourceless advection±diffusion case. Both

the `optimum' stabilization parameter yielding the exact solution at the nodes and the critical one

ensuring a stable solution have been found analytically for linear and quadratic elements.2,4,18±20 The

expressions for the simple 1D case have been heuristically extended for use in two- and three-
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dimensional advective±diffusive transport and ¯uid ¯ow problems in the last two decades.1,2,6±10

Indeed, the precise derivation of the stabilization parameters in these cases is nowadays a pending

issue.

One of the ®rst attempts to evaluate the stabilization parameter independently of the 1D expression

was presented by Idelsohn21 using a pseudovariational principle. In a recent paper Hughes22 has

presented the origins of stabilized methods as a particular class of the so-called subgrid-scale models.

As a result of this approach an analytical formula for the stabilization parameter involving the

element Green function is proposed. The exact computation of this function, however, is as dif®cult

as the original problem itself and an approximate form based on the use of bubble shape functions is

proposed. Good results for the simple 1D case are obtained with this approach as reported in

Reference 22. This line of thought has been followed by Brezzi and co-workers,23±26 who have

extended the ideas of Hughes22 by exploiting further the well-known stabilization properties of

bubble functions.

In this paper a conceptually different approach for deriving the stabilization parameter is proposed.

OnÄate27 has shown quite recently that the standard forms of the stabilization terms appearing in

numerical schemes based on ®nite element, ®nite difference, ®nite volume and ®nite point methods

can be naturally found by introducing a priori the characteristic length in the governing differential

equations. The new stabilized form of both the balance equation to be satis®ed within the analysis

domain and the Neumann boundary conditions can be easily found by using higher-order

approximations to model the changes in the advection±diffusion and source terms over a balance

domain. It is interesting to note that the discretized Galerkin ®nite element form of the new stabilized

differential equations can be found to be identical with that obtained using the well-known SUPG and

characteristic Galerkin approaches among others.27,28

In Reference 27 a procedure for computing numerically the stabilization parameter is proposed.

The method is based on the computation of an enhanced numerical solution via a smoothing of nodal

derivatives. The expression of the stabilization parameter is obtained by invoking the vanishing of the

new stabilized residual form for the original and enhanced solutions. This provides an explicit

expression for the element stabilization parameter in terms of the standard element residuals and their

®rst derivatives. Preliminary numerical tests presented in Reference 27 show the accuracy and

usefulness of the expression found for obtaining stable numerical solutions in an iterative (or a-

adaptative) manner, where the stabilization parameter a is updated after each solution until a stable

solution is found.

The objective of this paper is to explore further the possibilities of the new procedure for

computing the stabilization parameter proposed in Reference 27. In the ®rst part of the paper the basis

of the method is explained. This includes both the derivation of the stabilized form of the governing

differential equation and the expression for the stabilization parameter for one- and two-dimensional

advective±diffusive problems. In the second part of the paper the `a-adaptative' procedure for

obtaining stable numerical solutions is described and its ef®ciency and accuracy are shown in a

number of examples of application.

2. STABILIZED FORM OF THE GOVERNING EQUATIONS FOR ADVECTIVE±DIFFUSIVE

TRANSPORT

2.1. One-dimensional advective±diffusive problems

Let us consider for simplicity the standard advection±diffusion transport problem to be solved in a

one-dimensional domain of length l (Figure 1(a)). Figure 1(b) shows a typical segment AB of length

AB � h where balance (equilibrium) of ¯uxes must be satis®ed. The values of the diffusive ¯ow rate
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q and the advective transport rate uf at a point A with co-ordinate xA � xB ÿ h can be approximated

in terms of values at point B using the higher-order expansions

�uf��xB ÿ h� � �uf��xB� ÿ h
d�uf�

dx

����
B

� h2

2

d2�uf�
dx2

����
B

ÿ O�h3�; �1�

q�xÿ h� � q�x� ÿ h
dq

dx
� h2

2

d2q

dx2
� O�h3�; �2�

Q�xÿ h� � Q�x� ÿ h
dQ

dx
� O�h2�: �3�

The balance of ¯uxes between points A and B is written asP
fluxes � �flux in A� ÿ �flux in B� �

�h

0

Q dx � 0 �4�

or

q�x� � n�uf��x� ÿ q�xÿ h� ÿ n�uf��xÿ h� ÿ 1
2
�Q�x� � Q�xÿ h��h � 0: �5�

In (1)±(5) f is the unknown transported variable, u is the known velocity ®eld which is taken as

positive if it acts in the direction of the x-axis, n is the advective material parameter which is assumed

to be constant and Q is a distributed source which is assumed here to have a linear distribution over

the domain AB.

Substituting (1) into (5) and noting that the position of point B is arbitrary gives after simpli®cation

ÿn d�uf�
dx
ÿ dq

dx
� Q � 0: �6�

Making use now of Fourier's law q � ÿk df=dx gives ®nally

r ÿ h

2

dr

dx
� 0; 0 < x < l; �7�

with

r � ÿn d�uf�
dx
� d

dx
k

df
dx

� �
� Q: �8�

Note that for h! 0 (i.e. when the length of the balance domain is in®nitesimal) the standard form

of the governing equation for 1D advective±diffusive transport (r� 0) is recovered.

Figure 1. (a) One-dimensional convection±diffusion problem. (b) Finite balance domain AB
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The essential (Dirichlet) boundary condition is the standard one given by

fÿ �f � 0 on x � 0; �9�
where �f is the prescribed unknown ®eld at the Dirichlet boundary.

For consistency the stabilized form of the Neumann boundary condition is needed. This can be

obtained by invoking again the balance law in a segment AB next to a boundary point. For

convenience the length of this segment is taken as half of the characteristic length h of the interior

domain points.27 The balance equation is, assuming now the source Q to be constant over AB (see

Figure 2,

�qÿ q�xA� ÿ n�uf��xA� ÿ
h

2
Q � 0; �10�

where �q is the prescribed total ¯ux at x � l and xA � xB ÿ h=2.

Let us express now the advective and diffusive ¯uxes at point A in terms of second-order

expansions via (1). After a little algebra we obtain

ÿnuf� k
df
dx
� �qÿ h

2
r � 0 on x � l; �11�

where r is given by (24). Obviously for h! 0 the standard form of the Neumann boundary condition

is recovered.

Equation (7) can now be solved together with (9) and (11). These equations are the starting point to

derive stabilized numerical schemes using any discretization procedure.

The extension of this stabilization concept to the transient case can be found in Reference 27.

2.2. Two-dimensional advective±diffusive problems

The concepts of the previous subsection will be extended now to the solution of advection±

diffusion problems in a two-dimensional domain O with boundary G. Let us consider a ®nite

rectangular domain of dimensions hx and hy in directions x and y respectively. Both the advective and

diffusive ¯uxes are assumed to vary linearly along the four sides of the balance domain (Figure 3).

The ¯ux balance equation will be obtained using the following Taylor expansions: diffusive term,

third-order expansion; advective term, third-order expansion; source term, second-order expansion.

The balance of ¯uxes across the four sides of the rectangular domain of Figure 3 gives after some

algebra27

r ÿ 1
2

hTHHr � 0 on O; �12�

Figure 2. Balance domain next to a Neumann boundary point B
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where

r � ÿnHTf � HHT�DHHf� � Q; �13�

h � �hx; hy�T: �14�
In (13)

f � �uf; vf�T �15�
is the advective ¯ux vector,

HH � @

@x
;
@

@y

� �T

�16�

is the gradient operator and

D � kx 0

0 ky

� �
�17�

is the conductivity matrix. For simplicity x and y are assumed to coincide here with the principal axes

of material orthotropy. In (13) n is the advective ¯ux parameter which will be assumed to be constant

throughout the domain O �n � rc for thermal convection problems). Also as usual the velocities u

and v are taken as positive if coincident with the direction of the global axes x and y respectively.

The boundary conditions are written as

fÿ �f � 0 on Gf; �18�
where Gf is the Dirichlet boundary, where the variable is prescribed, and

ÿnnTuf� nTDHHf� �qn ÿ 1
2

hTnr � 0 on Gq; �19�

where �qn is the prescribed total ¯ux across the Neumann boundary Gq with G � Gf [ Gq and

n � �nx; ny�T is the normal vector.

Figure 3. Balance domain for 2D advection±diffusion problem. Advective and diffusive ¯uxes are assumed to vary linearly
along sides
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Equation (19) has been obtained by balance of ¯uxes in the boundary domain of Figure 4 following

the same procedure of the 1D case previously explained.27,28

The standard differential equations are simply obtained by neglecting the stabilizing terms in (12)±

(19) (i.e. making h� 0), which gives for the steady state case

r � 0 on O; fÿ �f � 0 on Gf;

ÿ nnTuf� nTDHHf� �qn � 0 on Gq:
�20�

The extension to three-dimensional problems is straightforward and identical stabilized

expressions are obtained.

2.3. The concept of intrinsic time

It can be further assumed that hx � h cos a and hy � h sin a, where a is the angle which the velocity

vector u � �u; v�T forms with the global x-axis and the distance h � �h2
x � h2

y�1=2 is the characteristic

length of the 2D advective±diffusive problem. This assumption implies that h is taken parallel to u.

The stabilized governing equation (12) can now be written as

r ÿ h

2juj u
THHr � 0: �21�

In the derivation of (21) use of the identities sin a � u=juj and cos a � v=juj has been made.

The intrinsic time in 2D advective±diffusive problems is de®ned now as6

t � h

2juj : �22�

With this de®nition equation (21) can be written as

r ÿ tuTHHr � 0 on O: �23�
The stabilized Neumann boundary condition (19) can also be expressed in terms of the intrinsic

time as

ÿnnTuf� nTDHHf� �qn ÿ tuTnr � 0 on Gq: �24�

Figure 4. Balance of ¯uxes in a two-dimensional domain next to a Neumann boundary
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Remark 1

It is interesting to note that the ®nite element Galerkin form of the new stabilized differential

equations leads to a set of discretized equations identical to those obtained by the standard SUPG

approach.27 This indicates that the stabilized form of the governing differential equations can be

considered as the `intrinsic' stable expression of the problem, leading to stable numerical schemes for

any discretization procedure.

Remark 2

The assumption of the characteristic length vector h being parallel to the velocity vector u is a

simpli®cation which eliminates any stabilizing transverse diffusion effect (as is usual in the SUPG

approach). Indeed, the two characteristic lengths hx and hy can be kept as `free' stabilization

parameters. This can be essential to reproduce the bene®cial effect of the so-called transverse (or

crosswind) discontinuity-capturing diffusion when sharp layers are present.29

3. A PROCEDURE FOR COMPUTATION OF THE STABILIZATION PARAMETER

Let us consider the ®nite element solution of an advective±diffusive problem. The standard

interpolation within an element e with n nodes can be written as

f � f̂ �Pn
i�1

Nifi; �25�

where Ni are the element shape functions and fi are nodal values of the approximate function f̂.

Substitution of (25) into (7) and (12) gives

1D problem r̂ ÿ h

2

dr̂

dx
� rO; 04 x4 l; �26�

2D problem r̂ ÿ h

2juj u
THHr̂ � rO in O; �27�

where r̂ � r�f̂�.
Let us de®ne now the average residual of a particular numerical solution over an element as

r�e� � 1

O�e�

�
O�e�

rO dO; �28�

where rO is de®ned by (26) and (27) for the one- and two-dimensional cases respectively. For

generality the two-dimensional problem will be considered next.

Substituting (27) into (28) gives

r�e� � r̂�e� ÿ h

2juj u
THHr̂

� ��e�
; �29�

where

a�e� � 1

O�e�

�
O�e�

a dO: �30�
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For simplicity the value of the characteristic length will be assumed to be constant over the

element, i.e. h � h�e�. With this assumption eq. (29) can be simpli®ed to

r�e� � r̂�e� ÿ h�e�

2

uT

jujHHr̂

� ��e�
: �31�

Obviously (31) can be further simpli®ed if the velocity is taken as constant within an element.

Let us consider now that an enhanced numerical solution has been found for a given ®nite element

mesh. This can be achieved by projecting into the original mesh an improved solution obtained via

mesh re®nement or, more simply, by global=local smoothing or superconvergent recovery of

derivatives.30 If r
�e�
1 and r

�e�
2 respectively denote the element residuals of the original and the enhanced

numerical solution for a given mesh, then it is obvious that

r
�e�
1 ÿ r

�e�
2 5 0: �32�

Combining (29) and (32) yields an expression for the element characteristic length as

h�e�5 2�r̂�e�2 ÿ r̂
�e�
1 �

uT

jujHHr̂2

� ��e�
ÿ
�

uT

jujHHr̂1

��e�" #ÿ1

: �33�

Assuming the velocity to be constant within the element gives the following simpler expression for

h�e�:

h�e�5 2�r̂�e�2 ÿ r̂
�e�
1 �

uT

juj ��HHr̂2��e� ÿ �HHr̂1��e��
� �ÿ1

: �34�

The equality case in (33) and (34) yields the critical value of the element characteristic length

ensuring no growth of numerical error.

The expression of the intrinsic time parameter for an element can be easily deduced by combining

de®nition (22) with equation (34) to give

t�e�5 �r̂�e�2 ÿ r̂
�e�
1 ��uT�HHr̂

�e�
2 ÿ HHr̂

�e�
1 ��ÿ1: �35�

The characteristic length can also be expressed as a proportion of a typical element dimension l�e�

as

h�e� � a�e�l�e�; �36�
where a�e� is the so-called element `stabilization parameter'.2 The dimension l�e� is usually taken as

the element length in 1D problems or the square of the element area in 2D problems, etc. Combining

(34) and (36) provides the expression of the element stabilization parameter. These concepts are

further clari®ed with the example presented next.

4. PROPOSAL FOR AN a-ADAPTATIVE STABILIZATION PROCEDURE

Equations (33)±(36) can be used for deriving an iterative scheme for computation of the element

stabilization parameter a�e� as follows.

(i) Solve the stabilized problem de®ned by (7) and (11) or (12) and (19) by the FEM with an

initial guess of the element stabilization parameter a�e� � 0 a�e�.
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(ii) Smooth the nodal derivatives ®eld. Evaluate r̂�1�; r̂�2�; �Hr̂��1� and �Hr̂��2� and compute an

enhanced value of the stabilization parameter 1 �a�e� by (33) and (36).

(iii) Repeat the numerical solution of the stabilized problem with a new value of a�e� given by
1a�e� � 1

2
�0a�e� � 1 �a�e��.

(iv) Repeat the process until a satisfactory stable numerical solution is found or else

ki�1a�e� ÿ ia�e�k4e, where e is a prescribed tolerance.

In the examples shown next we have found it useful to smooth the distribution of the ia�e�-values

obtained after step (iii). This can be simply done by a nodal averaging procedure. Also, the number of

iterations in the above process is substantially reduced if the initial guess for a�e� is not too far from

the ®nal converged value. This can be ensured by using for 0a�e� the standard expressions derived

from direct extensions of the simple 1D sourceless advective±diffusive case.

Obviously the above scheme applies identically for computing the characteristic length and

intrinsic time parameters.

4.1. Example 1. One-dimensional advective±diffusive problem with no source

Let us consider the FE solution of the 1D advection±diffusion problem

ÿu
df
dx
� k

d2f
dx2
� 0; 04 x4 l; �37�

with boundary conditions

f � 0 at x � 0; f � 1 at x � l: �38�
The expression for the element characteristic length for this simple case is deduced from (34) as

h�e�5 2�r̂�e�2 ÿ r̂
�e�
1 �

dr̂2

dx

� ��e�
ÿ dr̂1

dx

� ��e�" #ÿ1

: �39�

The solution will be attempted with the simplest two-node linear element. For a uniform mesh the

residual and the residual derivative for an element with nodes i and i� 1 can be found as

r̂
�e�
1 � ÿ

u

l�e�
�fi�1 ÿ fi�;

dr̂1

dx

� ��e�
� 0: �40�

The enhanced solution is obtained now by smoothing the ®rst-order derivative at the nodes. A

simple averaging procedure is chosen and the elemental residual for the enhanced solution is given by

r̂
�e�
2 � ÿ

u

2
�f̂0i � f̂0i�1� �

k

l�e�
�f̂0i�1 ÿ f̂0i�; �41�

where f̂0i � �df̂=dx�i. Simple algebra gives

r̂
�e�
2 � ÿ

u

4l�e�
fi�1 ÿ fiÿ1 � fi�2 ÿ fi� �

k

2�l�e��2 �fi�2 ÿ fi ÿ fi�1 � fiÿ1�: �42�

A similar procedure leads to

dr̂2

dx

� ��e�
� ÿu

d2f̂
dx2
� ÿ u

2�l�e��2 �fi�2 ÿ fi ÿ fi�1 � fiÿ1�: �43�
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Substituting (40)±(43) into (39) and using expression (36) gives the element stabilization

parameter as

a�e� � fi�2 ÿ 3fi�1 � 3fi ÿ fiÿ1

fi�2 ÿ fi�1 ÿ fi � fiÿ1

ÿ 1

g
: �44�

It can be checked that the value of a�e� given by (44) coincides in this case with the analytical

expression typically used in practice. For this purpose let us substitute into (44) the general numerical

solution for this case given by

fi � A� B
1� g�a� 1�
1� g�aÿ 1�
� �i

; �45�

where A and B are appropriate constants. After some simple algebra we obtain

a�e� � 1ÿ 1

g
; �46�

which coincides with the standard critical value ensuring a stable solution.2,3

4.2. Application of the a-adaptive scheme

The a-adaptative scheme previously described is ®rst applied to the solution of the 1D advective±

diffusive problem de®ned by (37) and (38). A uniform mesh of 20 two-node linear elements is used.

Equation (44) is used for the successive updating of the stabilization parameter in step (ii) of the

iterative process. Note that the computation of the term involving differences of the fi-values on the

RHS of (44) can be dif®cult owing to round-off errors in zones where changes in the numerical

solution are small. This problem can be overcome by the following procedure.

(i) If fi�2 ÿ f0 4e, where f0 is the prescribed value at the Dirichlet boundary and e is a very

small number, then the ®rst term on the RHS of (44) is made equal to unity. This correction

eliminates the possible oscillations of the computed value of a�e� in zones where relative

changes in the solution are small. In the examples shown next e � 10ÿ10 has been taken.

(ii) If ia�e� > 1 or ia�e� < 0, then ia�e� � 1 and ia�e� � 0 are respectively taken.

The ®rst solution is attempted for the Peclet number g � 5. The initial value 0a�e� � 0�5 is chosen

for all elements.

Figure 5 shows the convergence of the solution for a�e�. Note that the critical value a�e� � 0�8 is

obtained in all elements after a few iterations. Figure 5 also displays the convergence of the

numerical solution for f, showing convergence to the `exact' solution after three iterations.

Results for the same problem for g � 25 are shown in Figure 6. Note that an excellent solution is

obtained with just two iterations in this case. Seven iterations are needed, however, to obtain the

critical value of a�e� for all elements. Indeed, in both cases it suf®ces to obtain a good approximation

for a�e� in the vicinity of the exit node and this always occurs after two or three iterations.

Figure 7 shows the solution of the same problem for g � 1010, now with the initial value 0a�e� � 0

for all elements. Excellent results are again obtained after two iterations.

Note that in all three cases analysed the stabilised solution yields the `quasi-exact' nodal solution

giving a localized change in the unknown value from one to (almost) zero over the last element. This

can be explained by the well-known fact that the critical stabilization parameter ensuring numerical

stability and the optimal one yielding exact nodal results are almost coincident for element Peclet

numbers greater than two.
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4.3. Example 2. One-dimensional advective±diffusive problem with sine source

In this example we solve the problem ÿu df=dx� k d2f=dx2 � Q � 0 for u � 1;
k � 0�01;Q�x� � sin�px�; l � 1 and f0 � f1 � 0. The interval [0, 1] is discretized using 20 two-

node linear elements of equal length. This gives an element Peclet number of 2�5. The analytical

solution to this problem can be found in Reference 19. The initial value a�e� � 0�0 is chosen for all

elements.

Figure 8(a) shows the evolution of the f-distribution for the different iterations. Note the expected

spurious oscillations obtained for the ®rst solution with wrong values of the stabilization parameter.

These oscillations disappear after a few iterations and the ®nal converged solution compares well

with the analytical one as shown in Figure 8(b). The relative error between the analytical and the ®nal

numerical solution obtained after 10 iterations is plotted in Figure 8(c). Note that the maximum

relative error in 10 iterations is only 2% in the central part of the domain.

Figure 5. One-dimensional advection±diffusion problem. Q � 0;f0 � 0, fl � 1. Convergence of critical value of element
stabilization parameter a�e� and of numerical solution f. Solution obtained with 20 two-node linear elements. Peclet number

g � 5; 0a�e� � 0�5
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The distribution of the element stabilization parameter a�e� for each iteration is shown in Figure

8(d). It is interesting to note that a kind of sinusoidal distribution of a�e� is obtained.

Indeed, the number of iterations can be drastically reduced in this case by choosing a more accurate

prediction for the initial stabilization parameter (such as 0a�e� � 0�5).

4.4. Example 3. Two-dimensional advective±diffusive problem with constant source and uniform

Dirichlet boundary conditions

The ®rst 2D example chosen is the solution of the standard advection±diffusion equations (20) in a

square domain of unit size with

kx � ky � 2� 10ÿ2; u �
p

2

2
�1; 1�T; Q�x; y� � 5:

Figure 6. One-dimensional advection±diffusion problem. Q � 0;f0 � 0;fl � 1. Convergence of critical value of element
stabilization parameter a�e� and of numerical solution f. Solution obtained with 20 two-node linear elements. Peclet number

g � 25; 0a�e� � 0�5
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A Dirichlet boundary condition of f � 0 along the whole domain boundary has been assumed.

The domain has been discretized with a uniform ®nite element mesh of 20620 linear triangles

(Figure 9(a)).

The element stabilization parameter a�e� is computed by means of (34) and (36) with l�e� de®ned as

the maximum side length for each triangle. The initial value a�e� � 0�0 has again been chosen for all

elements.

Figure 9(b) shows the distribution of f for the ®rst, ®fth and ®nal converged solutions (after 10

iterations). Note that a stable solution is found and that the strong initial oscillations are substantially

reduced. The evolution of the distribution of the element stabilization parameter is displayed in

Figure 9(c). A plot of the ®nal distribution of f along the diagonal is shown in Figure 9(d), which is

in agreement with Reference 4.

Figure 7. One-dimensional advection±diffusion problem. Q � 0;f0 � 0;fl � 1. Convergence of critical value of element
stabilization parameter a�e� and of numerical solution f. Solution obtained with 20 two-node linear elements. Peclet number

g � 1010; 0a�e� � 0�0
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Figure 8(a). Example 2. One-dimensional advection±diffusion problem. Q � sin�px�;f0 � f1 � 0. Convergence of numerical
solution obtained with 20 linear elements. Element Peclet number 2�5; 0a�e� � 0�0

Figure 8(b). Example 2. Comparison of analytical solution and numerical solution (after 10 iterations)
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Figure 8(c). Example 2. Percentage error between analytical solution and numerical solution (after 10 iterations)

Figure 8(d). Example 2. Distribution of element stabilization parameter a�e� for different iterations
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4.5. Example 4. Two-dimensional advective±diffusive problem with zero source and non-uniform

Dirichlet boundary conditions

The 2D advection±diffusion equations are now solved with

O �� ÿ 1
2
; 1

2
��� ÿ 1

2
;ÿ 1

2
�;

u � �cos y;ÿ sin y�T;

kx � ky � 10ÿ6; Q�x; y� � 0;

�f�x; y� � 1 if �x; y� 2 Gf1
;

0 if �x; y� 2 Gf2
;

�
with Gf1

� fÿ 1
2
g � �1

4
; 1

2
� [ � ÿ 1

2
; 1

2
�f � 1

2
g, Gf2

� Gf ÿ Gf1
and Gq � 0.

A unstructured ®nite element mesh of 812 linear triangles has been chosen. The problem has been

solved for an angle of the velocity vector given by tanf � 2 (Figure 10(a)).

The element stabilization parameter has been computed following the procedure of the previous

example. Once again the initial value 0a�e� � 0 has been taken.

Figure 10(b) shows the distribution of f for the ®rst, ®fth and 10th iterations, for which a

converged solution is found. Note that the ®nal solution has some overshoots and undershoots as

expected. These are due to the inability of the SUPG formulation to deal with sharp layers not

perpendicular to the ¯ow direction such as those found in this case.19 These oscillations can be

eliminated by adding some crosswing dissipation as described in Reference 29. It is interesting to

note that the bene®cial effect of transverse dissipation in these cases can be modelled by abandoning

the assumption that the characteristic vector h has the same direction as the velocity vector u, as

pointed out in Remark 2. Our recent experiences in this context show promising results which will be

reported shortly.

The evolution of the distribution of the element stabilization parameter is displayed in Figure

10(c).

Figure 9(a). Example 3. Two-dimensional advective±diffusive problem with constant source and uniform Dirichlet boundary
conditions. Geometry and structured ®nite element mesh of 800 linear triangles
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Figure 9(b). Example 3. Evolution of distribution of f for different iterations
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Figure 9(c). Example 3. Evolution of distribution of element stabilization parameter for different iterations
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Figure 10(a). Example 4. Two-dimensional advective±diffusive problem with zero source and non-uniform Dirichlet boundary
conditions. Geometry and unstructured ®nite element mesh of 812 linear triangles

Figure 9(d). Example 3. Distribution of f along diagonal A±B for last iteration
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Figure 10(b). Example 4. Evolution of distribution of f for different iterations
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Figure 10(c). Example 4. Evolution of distribution of element stabilization parameter for different iterations
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5. CONCLUSIONS

The stabilized form of the governing differential equations proposed in Reference 27 provides the

basic residual expression for computing iteratively the stabilization parameter for advective±diffusive

problems. Extensions of the method to ¯uid ¯ow problems are straightforward following the

stabilized equations given in References 27 and 28. The stabilization approach proposed can be

considered as a class of adaptative method where the numerical solution is sequentially enhanced by

means of improving the value of the stabilization parameter while keeping the mesh and the ®nite

element approximation unchanged. The ef®ciency of this `a-adaptativity' procedure has been shown

in a number of examples of application. Further extensions of the method to a wider class of ¯uid

¯ow problems are in progress.
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